Cargando…

FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modu...

Descripción completa

Detalles Bibliográficos
Autores principales: Marcuzzo, Stefania, Isaia, Davide, Bonanno, Silvia, Malacarne, Claudia, Cavalcante, Paola, Zacheo, Antonella, Laquintana, Valentino, Denora, Nunzio, Sanavio, Barbara, Salvati, Elisa, Andreozzi, Patrizia, Stellacci, Francesco, Krol, Silke, Mellado-López, Maravillas, Mantegazza, Renato, Moreno-Manzano, Victoria, Bernasconi, Pia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468696/
https://www.ncbi.nlm.nih.gov/pubmed/30909571
http://dx.doi.org/10.3390/cells8030279
_version_ 1783411493339922432
author Marcuzzo, Stefania
Isaia, Davide
Bonanno, Silvia
Malacarne, Claudia
Cavalcante, Paola
Zacheo, Antonella
Laquintana, Valentino
Denora, Nunzio
Sanavio, Barbara
Salvati, Elisa
Andreozzi, Patrizia
Stellacci, Francesco
Krol, Silke
Mellado-López, Maravillas
Mantegazza, Renato
Moreno-Manzano, Victoria
Bernasconi, Pia
author_facet Marcuzzo, Stefania
Isaia, Davide
Bonanno, Silvia
Malacarne, Claudia
Cavalcante, Paola
Zacheo, Antonella
Laquintana, Valentino
Denora, Nunzio
Sanavio, Barbara
Salvati, Elisa
Andreozzi, Patrizia
Stellacci, Francesco
Krol, Silke
Mellado-López, Maravillas
Mantegazza, Renato
Moreno-Manzano, Victoria
Bernasconi, Pia
author_sort Marcuzzo, Stefania
collection PubMed
description Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression.
format Online
Article
Text
id pubmed-6468696
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64686962019-04-23 FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice Marcuzzo, Stefania Isaia, Davide Bonanno, Silvia Malacarne, Claudia Cavalcante, Paola Zacheo, Antonella Laquintana, Valentino Denora, Nunzio Sanavio, Barbara Salvati, Elisa Andreozzi, Patrizia Stellacci, Francesco Krol, Silke Mellado-López, Maravillas Mantegazza, Renato Moreno-Manzano, Victoria Bernasconi, Pia Cells Article Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. In ALS mice, neurodegeneration is associated with the proliferative restorative attempts of ependymal stem progenitor cells (epSPCs) that normally lie in a quiescent in the spinal cord. Thus, modulation of the proliferation of epSPCs may represent a potential strategy to counteract neurodegeneration. Recent studies demonstrated that FM19G11, a hypoxia-inducible factor modulator, induces epSPC self-renewal and proliferation. The aim of the study was to investigate whether FM19G11-loaded gold nanoparticles (NPs) can affect self-renewal and proliferation processes in epSPCs isolated from G93A-SOD1 mice at disease onset. We discovered elevated levels of SOX2, OCT4, AKT1, and AKT3, key genes associated with pluripotency, self-renewal, and proliferation, in G93A-SOD1 epSPCs at the transcriptional and protein levels after treatment with FM19G11-loaded NPs. We also observed an increase in the levels of the mitochondrial uncoupling protein (UCP) gene in treated cells. FM19G11-loaded NPs treatment also affected the expression of the cell cycle-related microRNA (miR)-19a, along with its target gene PTEN, in G93A-SOD1 epSPCs. Overall our findings establish the significant impact of FM19G11-loaded NPs on the cellular pathways involved in self-renewal and proliferation in G93A-SOD1 epSPCs, thus providing an impetus to the design of novel tailored approaches to delay ALS disease progression. MDPI 2019-03-23 /pmc/articles/PMC6468696/ /pubmed/30909571 http://dx.doi.org/10.3390/cells8030279 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Marcuzzo, Stefania
Isaia, Davide
Bonanno, Silvia
Malacarne, Claudia
Cavalcante, Paola
Zacheo, Antonella
Laquintana, Valentino
Denora, Nunzio
Sanavio, Barbara
Salvati, Elisa
Andreozzi, Patrizia
Stellacci, Francesco
Krol, Silke
Mellado-López, Maravillas
Mantegazza, Renato
Moreno-Manzano, Victoria
Bernasconi, Pia
FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title_full FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title_fullStr FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title_full_unstemmed FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title_short FM19G11-Loaded Gold Nanoparticles Enhance the Proliferation and Self-Renewal of Ependymal Stem Progenitor Cells Derived from ALS Mice
title_sort fm19g11-loaded gold nanoparticles enhance the proliferation and self-renewal of ependymal stem progenitor cells derived from als mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468696/
https://www.ncbi.nlm.nih.gov/pubmed/30909571
http://dx.doi.org/10.3390/cells8030279
work_keys_str_mv AT marcuzzostefania fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT isaiadavide fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT bonannosilvia fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT malacarneclaudia fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT cavalcantepaola fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT zacheoantonella fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT laquintanavalentino fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT denoranunzio fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT sanaviobarbara fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT salvatielisa fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT andreozzipatrizia fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT stellaccifrancesco fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT krolsilke fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT melladolopezmaravillas fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT mantegazzarenato fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT morenomanzanovictoria fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice
AT bernasconipia fm19g11loadedgoldnanoparticlesenhancetheproliferationandselfrenewalofependymalstemprogenitorcellsderivedfromalsmice