Cargando…
Using Expert Driven Machine Learning to Enhance Dynamic Metabolomics Data Analysis
Data analysis for metabolomics is undergoing rapid progress thanks to the proliferation of novel tools and the standardization of existing workflows. As untargeted metabolomics datasets and experiments continue to increase in size and complexity, standardized workflows are often not sufficiently sop...
Autores principales: | Beirnaert, Charlie, Peeters, Laura, Meysman, Pieter, Bittremieux, Wout, Foubert, Kenn, Custers, Deborah, Van der Auwera, Anastasia, Cuykx, Matthias, Pieters, Luc, Covaci, Adrian, Laukens, Kris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468718/ https://www.ncbi.nlm.nih.gov/pubmed/30897797 http://dx.doi.org/10.3390/metabo9030054 |
Ejemplares similares
-
Compound Characterization and Metabolic Profile Elucidation after In Vitro Gastrointestinal and Hepatic Biotransformation of an Herniaria hirsuta Extract Using Unbiased Dynamic Metabolomic Data Analysis
por: Peeters, Laura, et al.
Publicado: (2020) -
Exposure of HepaRG Cells to Sodium Saccharin Underpins the Importance of Including Non-Hepatotoxic Compounds When Investigating Toxicological Modes of Action Using Metabolomics
por: Cuykx, Matthias, et al.
Publicado: (2019) -
speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification
por: Beirnaert, Charlie, et al.
Publicado: (2018) -
Grasping frequent subgraph mining for bioinformatics applications
por: Mrzic, Aida, et al.
Publicado: (2018) -
Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor Sequence Repertoires
por: Gielis, Sofie, et al.
Publicado: (2019)