Cargando…
MicroRNA-4719 and microRNA-6756-5p Correlate with Castration-Resistant Prostate Cancer Progression through Interleukin-24 Regulation
Prostate cancer (PCa) is the second leading cause of cancer death in the United States. The five-year survival rate for men diagnosed with localized PCa is nearly 100%, yet for those diagnosed with aggressive PCa, it is less than 30%. The pleiotropic cytokine Interleukin-24 (IL-24) has been shown to...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468726/ https://www.ncbi.nlm.nih.gov/pubmed/30669553 http://dx.doi.org/10.3390/ncrna5010010 |
Sumario: | Prostate cancer (PCa) is the second leading cause of cancer death in the United States. The five-year survival rate for men diagnosed with localized PCa is nearly 100%, yet for those diagnosed with aggressive PCa, it is less than 30%. The pleiotropic cytokine Interleukin-24 (IL-24) has been shown to specifically kill PCa cells compared to normal cells when overexpressed in both in vitro and in vivo studies. Despite this, the mechanisms regulating IL-24 in PCa are not well understood. Since specific microRNAs (miRNAs) are dysregulated in PCa, we used miRNA target prediction algorithm tools to identify miR-4719 and miR-6556-5p as putative regulators of IL-24. This study elucidates the expression profile and role of miR-4719 and miR-6756-5p as regulators of IL-24 in PCa. qRT-PCR analysis shows miR-4719 and miR-6756-5p overexpression significantly decreases the expression of IL-24 in PCa cells compared to the negative control. Compared to the indolent PCa and normal prostate epithelial cells, miR-4719 and miR-6756-5p are significantly overexpressed in castration-resistant prostate cancer (CRPC) cell lines, indicating that their gain may be an early event in PCa progression. Moreover, miR-4719 and miR-6756-5p are significantly overexpressed in the CRPC cell line of African-American males (E006AA-hT) compared to CRPC cell lines of Caucasian males (PC-3 and DU-145), indicating that miR-4719 and miR-6756-5p may also play a role in racial disparity. Lastly, the inhibition of expression of miR-4719 and miR-6756-5p significantly increases IL-24 expression and inhibits proliferation and migration of CRPC cell lines. Our findings indicate that miR-4719 and miR-6756-5p may regulate CRPC progression through the targeting of IL-24 expression and may be biomarkers that differentiate between indolent and CRPC. Strategies to inhibit miR-4719 and miR-6756-5p expression to increase IL-24 in PCa may have therapeutic efficacy in aggressive PCa. |
---|