Cargando…
Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift
Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions w...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468880/ https://www.ncbi.nlm.nih.gov/pubmed/30626081 http://dx.doi.org/10.3390/bios9010009 |
_version_ | 1783411535019769856 |
---|---|
author | López de Guereñu, Anna Bastian, Philipp Wessig, Pablo John, Leonard Kumke, Michael U. |
author_facet | López de Guereñu, Anna Bastian, Philipp Wessig, Pablo John, Leonard Kumke, Michael U. |
author_sort | López de Guereñu, Anna |
collection | PubMed |
description | Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF(4)-based UCNP co-doped with Yb(3+) and Tm(3+) as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d′]bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm(3+) only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. |
format | Online Article Text |
id | pubmed-6468880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64688802019-04-23 Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift López de Guereñu, Anna Bastian, Philipp Wessig, Pablo John, Leonard Kumke, Michael U. Biosensors (Basel) Article Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF(4)-based UCNP co-doped with Yb(3+) and Tm(3+) as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d′]bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm(3+) only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. MDPI 2019-01-08 /pmc/articles/PMC6468880/ /pubmed/30626081 http://dx.doi.org/10.3390/bios9010009 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article López de Guereñu, Anna Bastian, Philipp Wessig, Pablo John, Leonard Kumke, Michael U. Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title | Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title_full | Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title_fullStr | Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title_full_unstemmed | Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title_short | Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift |
title_sort | energy transfer between tm-doped upconverting nanoparticles and a small organic dye with large stokes shift |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468880/ https://www.ncbi.nlm.nih.gov/pubmed/30626081 http://dx.doi.org/10.3390/bios9010009 |
work_keys_str_mv | AT lopezdeguerenuanna energytransferbetweentmdopedupconvertingnanoparticlesandasmallorganicdyewithlargestokesshift AT bastianphilipp energytransferbetweentmdopedupconvertingnanoparticlesandasmallorganicdyewithlargestokesshift AT wessigpablo energytransferbetweentmdopedupconvertingnanoparticlesandasmallorganicdyewithlargestokesshift AT johnleonard energytransferbetweentmdopedupconvertingnanoparticlesandasmallorganicdyewithlargestokesshift AT kumkemichaelu energytransferbetweentmdopedupconvertingnanoparticlesandasmallorganicdyewithlargestokesshift |