Cargando…
Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review
The aim of this study was to provide an overview of the literature available on machine learning (ML) algorithms applied to the Lung Image Database Consortium Image Collection (LIDC-IDRI) database as a tool for the optimization of detecting lung nodules in thoracic CT scans. This systematic review w...
Autores principales: | Pehrson, Lea Marie, Nielsen, Michael Bachmann, Ammitzbøl Lauridsen, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468920/ https://www.ncbi.nlm.nih.gov/pubmed/30866425 http://dx.doi.org/10.3390/diagnostics9010029 |
Ejemplares similares
-
The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review
por: Li, Dana, et al.
Publicado: (2019) -
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
por: Jacobs, Colin, et al.
Publicado: (2015) -
DICOM re‐encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules
por: Fedorov, Andrey, et al.
Publicado: (2020) -
Type-driven development with Idris
por: Brady, Edwin
Publicado: (2017) -
The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-ray: A Systematic Review
por: Li, Dana, et al.
Publicado: (2021)