Cargando…
Combining Sparse Group Lasso and Linear Mixed Model Improves Power to Detect Genetic Variants Underlying Quantitative Traits
Genome-Wide association studies (GWAS), based on testing one single nucleotide polymorphism (SNP) at a time, have revolutionized our understanding of the genetics of complex traits. In GWAS, there is a need to consider confounding effects such as due to population structure, and take groups of SNPs...
Autores principales: | Guo, Yingjie, Wu, Chenxi, Guo, Maozu, Zou, Quan, Liu, Xiaoyan, Keinan, Alon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469383/ https://www.ncbi.nlm.nih.gov/pubmed/31024614 http://dx.doi.org/10.3389/fgene.2019.00271 |
Ejemplares similares
-
Genetic Variants Detection Based on Weighted Sparse Group Lasso
por: Che, Kai, et al.
Publicado: (2020) -
Gene-Based Nonparametric Testing of Interactions Using Distance Correlation Coefficient in Case-Control Association Studies
por: Guo, Yingjie, et al.
Publicado: (2018) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
Groupyr: Sparse Group Lasso in Python
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022)