Cargando…
Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models
Pathological estimation of tumor necrosis after chemotherapy is essential for patients with osteosarcoma. This study reports the first fully automated tool to assess viable and necrotic tumor in osteosarcoma, employing advances in histopathology digitization and automated learning. We selected 40 di...
Autores principales: | Arunachalam, Harish Babu, Mishra, Rashika, Daescu, Ovidiu, Cederberg, Kevin, Rakheja, Dinesh, Sengupta, Anita, Leonard, David, Hallac, Rami, Leavey, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469748/ https://www.ncbi.nlm.nih.gov/pubmed/30995247 http://dx.doi.org/10.1371/journal.pone.0210706 |
Ejemplares similares
-
Correlation of histopathology and multi-modal magnetic resonance imaging in childhood osteosarcoma: Predicting tumor response to chemotherapy
por: Teo, Ka Yaw, et al.
Publicado: (2022) -
Deep Learning
to Analyze Sliding Drops
por: Shumaly, Sajjad, et al.
Publicado: (2023) -
In vivo histone H1 migration from necrotic to viable tissue
por: Luhrs, Keith A., et al.
Publicado: (2017) -
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Comparison of an unsupervised machine learning algorithm and surgeon diagnosis in the clinical differentiation of metopic craniosynostosis and benign metopic ridge
por: Cho, Min-Jeong, et al.
Publicado: (2018)