Cargando…
Large cortical bone pores in the tibia are associated with proximal femur strength
Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the co...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469812/ https://www.ncbi.nlm.nih.gov/pubmed/30995279 http://dx.doi.org/10.1371/journal.pone.0215405 |
_version_ | 1783411686031491072 |
---|---|
author | Iori, Gianluca Schneider, Johannes Reisinger, Andreas Heyer, Frans Peralta, Laura Wyers, Caroline Gräsel, Melanie Barkmann, Reinhard Glüer, Claus C. van den Bergh, J. P. Pahr, Dieter Raum, Kay |
author_facet | Iori, Gianluca Schneider, Johannes Reisinger, Andreas Heyer, Frans Peralta, Laura Wyers, Caroline Gräsel, Melanie Barkmann, Reinhard Glüer, Claus C. van den Bergh, J. P. Pahr, Dieter Raum, Kay |
author_sort | Iori, Gianluca |
collection | PubMed |
description | Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 μm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMD(neck)) was measured by dual‐energy X‐ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMD(neck) (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 μm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMD(neck), the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo. |
format | Online Article Text |
id | pubmed-6469812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64698122019-05-03 Large cortical bone pores in the tibia are associated with proximal femur strength Iori, Gianluca Schneider, Johannes Reisinger, Andreas Heyer, Frans Peralta, Laura Wyers, Caroline Gräsel, Melanie Barkmann, Reinhard Glüer, Claus C. van den Bergh, J. P. Pahr, Dieter Raum, Kay PLoS One Research Article Alterations of structure and density of cortical bone are associated with fragility fractures and can be assessed in vivo in humans at the tibia. Bone remodeling deficits in aging women have been recently linked to an increase in size of cortical pores. In this ex vivo study, we characterized the cortical microarchitecture of 19 tibiae from human donors (aged 69 to 94 years) to address, whether this can reflect impairments of the mechanical competence of the proximal femur, i.e., a major fracture site in osteoporosis. Scanning acoustic microscopy (12 μm pixel size) provided reference microstructural measurements at the left tibia, while the bone vBMD at this site was obtained using microcomputed tomography (microCT). The areal bone mineral density of both left and right femoral necks (aBMD(neck)) was measured by dual‐energy X‐ray absorptiometry (DXA), while homogenized nonlinear finite element models based on high-resolution peripheral quantitative computed tomography provided hip stiffness and strength for one-legged standing and sideways falling loads. Hip strength was associated with aBMD(neck) (r = 0.74 to 0.78), with tibial cortical thickness (r = 0.81) and with measurements of the tibial cross-sectional geometry (r = 0.48 to 0.73) of the same leg. Tibial vBMD was associated with hip strength only for standing loads (r = 0.59 to 0.65). Cortical porosity (Ct.Po) of the tibia was not associated with any of the femoral parameters. However, the proportion of Ct.Po attributable to large pores (diameter > 100 μm) was associated with hip strength in both standing (r = -0.61) and falling (r = 0.48) conditions. When added to aBMD(neck), the prevalence of large pores could explain up to 17% of the femur ultimate force. In conclusion, microstructural characteristics of the tibia reflect hip strength as well as femoral DXA, but it remains to be tested whether such properties can be measured in vivo. Public Library of Science 2019-04-17 /pmc/articles/PMC6469812/ /pubmed/30995279 http://dx.doi.org/10.1371/journal.pone.0215405 Text en © 2019 Iori et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Iori, Gianluca Schneider, Johannes Reisinger, Andreas Heyer, Frans Peralta, Laura Wyers, Caroline Gräsel, Melanie Barkmann, Reinhard Glüer, Claus C. van den Bergh, J. P. Pahr, Dieter Raum, Kay Large cortical bone pores in the tibia are associated with proximal femur strength |
title | Large cortical bone pores in the tibia are associated with proximal femur strength |
title_full | Large cortical bone pores in the tibia are associated with proximal femur strength |
title_fullStr | Large cortical bone pores in the tibia are associated with proximal femur strength |
title_full_unstemmed | Large cortical bone pores in the tibia are associated with proximal femur strength |
title_short | Large cortical bone pores in the tibia are associated with proximal femur strength |
title_sort | large cortical bone pores in the tibia are associated with proximal femur strength |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469812/ https://www.ncbi.nlm.nih.gov/pubmed/30995279 http://dx.doi.org/10.1371/journal.pone.0215405 |
work_keys_str_mv | AT iorigianluca largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT schneiderjohannes largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT reisingerandreas largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT heyerfrans largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT peraltalaura largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT wyerscaroline largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT graselmelanie largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT barkmannreinhard largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT gluerclausc largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT vandenberghjp largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT pahrdieter largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength AT raumkay largecorticalboneporesinthetibiaareassociatedwithproximalfemurstrength |