Cargando…

An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data

Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statis...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheng, Lu, Ramchandran, Siddharth, Vatanen, Tommi, Lietzén, Niina, Lahesmaa, Riitta, Vehtari, Aki, Lähdesmäki, Harri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470127/
https://www.ncbi.nlm.nih.gov/pubmed/30996266
http://dx.doi.org/10.1038/s41467-019-09785-8
_version_ 1783411731547029504
author Cheng, Lu
Ramchandran, Siddharth
Vatanen, Tommi
Lietzén, Niina
Lahesmaa, Riitta
Vehtari, Aki
Lähdesmäki, Harri
author_facet Cheng, Lu
Ramchandran, Siddharth
Vatanen, Tommi
Lietzén, Niina
Lahesmaa, Riitta
Vehtari, Aki
Lähdesmäki, Harri
author_sort Cheng, Lu
collection PubMed
description Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statistical analysis of longitudinal data. However, analysis of longitudinal data can be complicated for reasons such as difficulties in modelling correlated outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects, and model inference. We present LonGP, an additive Gaussian process regression model that is specifically designed for statistical analysis of longitudinal data, which solves these commonly faced challenges. LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We demonstrate LonGP’s performance and accuracy by analysing various simulated and real longitudinal -omics datasets.
format Online
Article
Text
id pubmed-6470127
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64701272019-04-19 An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data Cheng, Lu Ramchandran, Siddharth Vatanen, Tommi Lietzén, Niina Lahesmaa, Riitta Vehtari, Aki Lähdesmäki, Harri Nat Commun Article Biomedical research typically involves longitudinal study designs where samples from individuals are measured repeatedly over time and the goal is to identify risk factors (covariates) that are associated with an outcome value. General linear mixed effect models are the standard workhorse for statistical analysis of longitudinal data. However, analysis of longitudinal data can be complicated for reasons such as difficulties in modelling correlated outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects, and model inference. We present LonGP, an additive Gaussian process regression model that is specifically designed for statistical analysis of longitudinal data, which solves these commonly faced challenges. LonGP can model time-varying random effects and non-stationary signals, incorporate multiple kernel learning, and provide interpretable results for the effects of individual covariates and their interactions. We demonstrate LonGP’s performance and accuracy by analysing various simulated and real longitudinal -omics datasets. Nature Publishing Group UK 2019-04-17 /pmc/articles/PMC6470127/ /pubmed/30996266 http://dx.doi.org/10.1038/s41467-019-09785-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Cheng, Lu
Ramchandran, Siddharth
Vatanen, Tommi
Lietzén, Niina
Lahesmaa, Riitta
Vehtari, Aki
Lähdesmäki, Harri
An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title_full An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title_fullStr An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title_full_unstemmed An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title_short An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data
title_sort additive gaussian process regression model for interpretable non-parametric analysis of longitudinal data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470127/
https://www.ncbi.nlm.nih.gov/pubmed/30996266
http://dx.doi.org/10.1038/s41467-019-09785-8
work_keys_str_mv AT chenglu anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT ramchandransiddharth anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT vatanentommi anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lietzenniina anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lahesmaariitta anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT vehtariaki anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lahdesmakiharri anadditivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT chenglu additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT ramchandransiddharth additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT vatanentommi additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lietzenniina additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lahesmaariitta additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT vehtariaki additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata
AT lahdesmakiharri additivegaussianprocessregressionmodelforinterpretablenonparametricanalysisoflongitudinaldata