Cargando…
Prevention of hatching of porcine morulae and blastocysts by liquid storage at 20 °C
Vitrification is the ideal method for long-lasting storage of porcine embryos. However, both strict airline regulations for transport of liquid nitrogen dewars and the technical problems experienced when vitrified embryos are transferred using non-surgical procedures have led to the introduction of...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470143/ https://www.ncbi.nlm.nih.gov/pubmed/30996298 http://dx.doi.org/10.1038/s41598-019-42712-x |
Sumario: | Vitrification is the ideal method for long-lasting storage of porcine embryos. However, both strict airline regulations for transport of liquid nitrogen dewars and the technical problems experienced when vitrified embryos are transferred using non-surgical procedures have led to the introduction of alternative storage methods, such as preserving embryos in liquid state. This study evaluated whether a pH-stable medium containing high concentrations of either foetal calf serum (FCS; 50%) or BSA (4%) combined with storage at temperatures of 17 °C or 20 °C maintained in vivo-derived morulae and blastocysts alive and unhatched (a sanitary requirement for embryo transportation) during 72 h of storage. Neither FCS nor BSA supplements were able to counteract the negative effect of low temperatures (17 °C) on embryonic survival after storage. At 20 °C, the protective effect of FCS or BSA depended on embryo stage. While FCS successfully arrested embryo development of only blastocysts, BSA arrested the development of both morulae and blastocysts. Over 80% of BSA arrested embryos restarted development by conventional culture and progressed to further embryonic stages, including hatching. In conclusion, porcine morulae and blastocysts can survive and remain unhatched during at least 72 h when stored at 20 °C in a BSA-containing medium. |
---|