Cargando…
Dimension Reduction for Hyperspectral Remote Sensor Data Based on Multi-Objective Particle Swarm Optimization Algorithm and Game Theory
Information entropy and interclass separability are adopted as the evaluation criteria of dimension reduction for hyperspectral remote sensor data. However, it is rather single-faceted to simply use either information entropy or interclass separability as evaluation criteria, and will lead to a sing...
Autores principales: | Gao, Hongmin, Yang, Yao, Zhang, Xiaoke, Li, Chenming, Yang, Qi, Wang, Yongchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470484/ https://www.ncbi.nlm.nih.gov/pubmed/30884835 http://dx.doi.org/10.3390/s19061327 |
Ejemplares similares
-
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
por: Li, Chenming, et al.
Publicado: (2019) -
Grey Model Optimized by Particle Swarm Optimization for Data Analysis and Application of Multi-Sensors
por: Li, Chenming, et al.
Publicado: (2018) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Integrating Sensor Ontologies with Niching Multi-Objective Particle Swarm Optimization Algorithm
por: Zhuang, Yucheng, et al.
Publicado: (2023) -
Coordinating Swarms of Objects at Extreme Dimensions
por: Fekete, Sándor P.
Publicado: (2020)