Cargando…
Controlled Lighting and Illumination-Independent Target Detection for Real-Time Cost-Efficient Applications. The Case Study of Sweet Pepper Robotic Harvesting
Current harvesting robots are limited by low detection rates due to the unstructured and dynamic nature of both the objects and the environment. State-of-the-art algorithms include color- and texture-based detection, which are highly sensitive to the illumination conditions. Deep learning algorithms...
Autores principales: | Arad, Boaz, Kurtser, Polina, Barnea, Ehud, Harel, Ben, Edan, Yael, Ben-Shahar, Ohad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470490/ https://www.ncbi.nlm.nih.gov/pubmed/30901837 http://dx.doi.org/10.3390/s19061390 |
Ejemplares similares
-
Viewpoint Analysis for Maturity Classification of Sweet Peppers
por: Harel, Ben, et al.
Publicado: (2020) -
Automatic Parameter Tuning for Adaptive Thresholding in Fruit Detection
por: Zemmour, Elie, et al.
Publicado: (2019) -
Distance-Dependent Multimodal Image Registration for Agriculture Tasks
por: Berenstein, Ron, et al.
Publicado: (2015) -
Maturation and Post-Harvest Resting of Fruits Affect the Macronutrients and Protein Content in Sweet Pepper Seeds
por: Colombari, Lidiane Fernandes, et al.
Publicado: (2022) -
Sweetness and light: illuminating the honey bee genome
por: Robinson, G E, et al.
Publicado: (2006)