Cargando…

Energy Storage Overflow-Aware Data Delivery Scheme for Energy Harvesting Wireless Sensor Networks

In Energy-Harvesting Wireless Sensor Networks (EH-WSNs), energy storage with limited capacity is used in the nodes to store the harvested energy. Energy storage overflow (ESO) happens when the energy storage is full, which causes the nodes to be unable to store the newly harvested energy. In traditi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Wenwei, Zhu, Yi-hua, Chi, Kaikai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470496/
https://www.ncbi.nlm.nih.gov/pubmed/30897798
http://dx.doi.org/10.3390/s19061383
Descripción
Sumario:In Energy-Harvesting Wireless Sensor Networks (EH-WSNs), energy storage with limited capacity is used in the nodes to store the harvested energy. Energy storage overflow (ESO) happens when the energy storage is full, which causes the nodes to be unable to store the newly harvested energy. In traditional data delivery schemes, there is the problem of “energy hungry and surplus coexistence”, meaning that some nodes in the network are hungry for energy while some other nodes continue to waste energy due to ESO. To alleviate this problem, in this paper, we present the ESO-aware multiple path (EAMP) data delivery scheme so that more data can be delivered to the sink. With the EAMP, multiple disjoint paths from the source node to the sink are constructed, and the source node splits data into multiple pieces with each going through one of the paths, which helps in mitigating ESO. Simulation results show that the proposed EAMP scheme can deliver more data than the existing ones.