Cargando…
An Artificial Neural Network Approach to Predict the Effects of Formulation and Process Variables on Prednisone Release from a Multipartite System
The impact of formulation and process variables on the in-vitro release of prednisone from a multiple-unit pellet system was investigated. Box-Behnken Response Surface Methodology (RSM) was used to generate multivariate experiments. The extrusion-spheronization method was used to produce pellets and...
Autores principales: | Manda, Arthur, Walker, Roderick B., Khamanga, Sandile M. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470535/ https://www.ncbi.nlm.nih.gov/pubmed/30866418 http://dx.doi.org/10.3390/pharmaceutics11030109 |
Ejemplares similares
-
Formulation and Characterisation of a Combination Captopril and Hydrochlorothiazide Microparticulate Dosage Form
por: Chikukwa, Mellisa T. R., et al.
Publicado: (2020) -
Design, Optimization, Manufacture and Characterization of Efavirenz-Loaded Flaxseed Oil Nanoemulsions
por: Mazonde, Priveledge, et al.
Publicado: (2020) -
Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery
por: Dasram, Mendhi Henna, et al.
Publicado: (2022) -
Optimization of Salbutamol Sulfate Dissolution from Sustained Release Matrix Formulations Using an Artificial Neural Network
por: Chaibva, Faith, et al.
Publicado: (2010) -
Chitosan-Coated SLN: A Potential System for Ocular Delivery of Metronidazole
por: Sikhondze, Simise S., et al.
Publicado: (2023)