Cargando…
A Multi-Module Electrodynamic Exciter with a Variable Pole-Arc Ratio Disk Halbach Array for a High-Bandwidth Dynamic Torsional Stiffness Test
In this paper, a multi-module electrodynamic exciter based on moving-magnet disk voice coil motor is presented to meet the demands of high torque and high bandwidth in a dynamic torsional stiffness test. A variable pole-arc ratio disk Halbach array (VPAR-DHA) is proposed, so that both high torque de...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470660/ https://www.ncbi.nlm.nih.gov/pubmed/30871225 http://dx.doi.org/10.3390/s19061272 |
Sumario: | In this paper, a multi-module electrodynamic exciter based on moving-magnet disk voice coil motor is presented to meet the demands of high torque and high bandwidth in a dynamic torsional stiffness test. A variable pole-arc ratio disk Halbach array (VPAR-DHA) is proposed, so that both high torque density and low rotor inertia can be obtained through enhancing the magnetic field in the working range. The analytical quasi-3-D model of VPAR-DHA was set up by using the harmonic function method, with the consideration of end-effects by a correction function. Electromagnetic structure optimization was carried out with the analytical model, and verified by 3-D finite-element (FEM) results. The proposed design was experimentally tested and verified with a prototype that achieved a peak dynamic torque output of 40 Nm at a frequency of 120 Hz, and a stroke of ±1°. The proposed method can also be easily extended to satisfy various demands of dynamic torsional stiffness test. |
---|