Cargando…
Automatic Detection of Faults in Race Walking: A Comparative Analysis of Machine-Learning Algorithms Fed with Inertial Sensor Data
The validity of results in race walking is often questioned due to subjective decisions in the detection of faults. This study aims to compare machine-learning algorithms fed with data gathered from inertial sensors placed on lower-limb segments to define the best-performing classifiers for the auto...
Autores principales: | Taborri, Juri, Palermo, Eduardo, Rossi, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470680/ https://www.ncbi.nlm.nih.gov/pubmed/30934643 http://dx.doi.org/10.3390/s19061461 |
Ejemplares similares
-
WARNING: A Wearable Inertial-Based Sensor Integrated with a Support Vector Machine Algorithm for the Identification of Faults during Race Walking
por: Taborri, Juri, et al.
Publicado: (2023) -
A Novel HMM Distributed Classifier for the Detection of Gait Phases by Means of a Wearable Inertial Sensor Network
por: Taborri, Juri, et al.
Publicado: (2014) -
Inertial Sensor Algorithm to Estimate Walk Distance
por: Shah, Vrutangkumar V., et al.
Publicado: (2022) -
Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview
por: Taborri, Juri, et al.
Publicado: (2020) -
Gait Partitioning Methods: A Systematic Review
por: Taborri, Juri, et al.
Publicado: (2016)