Cargando…
Next Location Prediction Based on an Adaboost-Markov Model of Mobile Users †
As an emerging class of spatial trajectory data, mobile user trajectory data can be used to analyze individual or group behavioral characteristics, hobbies and interests. Besides, the information extracted from original trajectory data is widely used in smart cities, transportation planning, and ant...
Autores principales: | Wang, Hongjun, Yang, Zhen, Shi, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470696/ https://www.ncbi.nlm.nih.gov/pubmed/30917583 http://dx.doi.org/10.3390/s19061475 |
Ejemplares similares
-
Mobility Prediction Using a Weighted Markov Model Based on Mobile User Classification
por: Yan, Ming, et al.
Publicado: (2021) -
A DBULSTM-Adaboost Model for Sea Surface Temperature Prediction
por: Yang, Jiachen, et al.
Publicado: (2022) -
DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications
por: Lu, Yiming, et al.
Publicado: (2015) -
A geographical location prediction method based on continuous time series Markov model
por: Du, Yongping, et al.
Publicado: (2018) -
AdaBoost based Random forest model for Emotion classification of Facial images
por: Gubbala, Kumari, et al.
Publicado: (2023)