Cargando…
Flexible Carbon Nanotube-Based Polymer Electrode for Long-Term Electrocardiographic Recording
The long-term monitoring of electrocardiogram (ECG) is critical for the accurate diagnosis and tracking of cardiovascular diseases (CVDs). However, the commercial Ag/AgCl electrode is not suitable for long-term monitoring due to skin allergies and signal degradation, caused by the conductive gel dry...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470748/ https://www.ncbi.nlm.nih.gov/pubmed/30909577 http://dx.doi.org/10.3390/ma12060971 |
Sumario: | The long-term monitoring of electrocardiogram (ECG) is critical for the accurate diagnosis and tracking of cardiovascular diseases (CVDs). However, the commercial Ag/AgCl electrode is not suitable for long-term monitoring due to skin allergies and signal degradation, caused by the conductive gel drying over time. In this paper, a flexible gel-free electrode, composed of a multi-wall carbon nanotube (MWCNT) and polydimethylsiloxane (PDMS), is proposed for long-term wearable ECG monitoring. To achieve uniform dispersion of MWCNTs in viscous PDMS, we developed a novel parallel solvent-assisted ultrasonic dispersion method, wherein the organic solvent n–Hexane served as a dispersion to avoid MWCNT aggregates. The properties of the MWCNT/PDMS electrode were assessed through structural characterization, contact impedance tests, ECG measurements, and biocompatibility tests. When the MWCNT weight fraction reached 5.5 wt%, the skin-electrode contact impedance of the MWCNT/PDMS electrode was lower than that of the Ag/AgCl electrode below 100 Hz. In daily ECG monitoring, the MWCNT/PDMS electrodes showed superior performance against motion artifact compared to the Ag/AgCl electrode. After seven days of wearing the MWCNT/PDMS electrode, ECG signals did not degrade and no side effects, such as skin redness and swelling, were observed. Thus, this electrode could enable long-term ECG monitoring in wearable healthcare systems. |
---|