Cargando…
Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy
Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471104/ https://www.ncbi.nlm.nih.gov/pubmed/30901849 http://dx.doi.org/10.3390/ma12060940 |
_version_ | 1783411951808806912 |
---|---|
author | Kvryan, Armen Efaw, Corey M. Higginbotham, Kari A. Maryon, Olivia O. Davis, Paul H. Graugnard, Elton Trivedi, Hitesh K. Hurley, Michael F. |
author_facet | Kvryan, Armen Efaw, Corey M. Higginbotham, Kari A. Maryon, Olivia O. Davis, Paul H. Graugnard, Elton Trivedi, Hitesh K. Hurley, Michael F. |
author_sort | Kvryan, Armen |
collection | PubMed |
description | Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 mV Volta potential difference between the two phases. Corrosion progression was monitored on the nanoscale via SKPFM and in situ atomic force microscopy (AFM), revealing different corrosion modes among heat treatments that predicted bulk corrosion behavior in electrochemical testing. HTT outperforms LTT and CN in wear testing and thus is recommended for non-corrosive aerospace applications, whereas CN is recommended for corrosion-prone applications as it exhibits exceptional corrosion resistance. The results reported here support the use of scanning probe microscopy for predicting bulk corrosion behavior by measuring nanoscale surface differences in properties between carbides and the surrounding matrix. |
format | Online Article Text |
id | pubmed-6471104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64711042019-04-27 Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy Kvryan, Armen Efaw, Corey M. Higginbotham, Kari A. Maryon, Olivia O. Davis, Paul H. Graugnard, Elton Trivedi, Hitesh K. Hurley, Michael F. Materials (Basel) Article Historically, high carbon steels have been used in mechanical applications because their high surface hardness contributes to excellent wear performance. However, in aggressive environments, current bearing steels exhibit insufficient corrosion resistance. Martensitic stainless steels are attractive for bearing applications due to their high corrosion resistance and ability to be surface hardened via carburizing heat treatments. Here three different carburizing heat treatments were applied to UNS S42670: a high-temperature temper (HTT), a low-temperature temper (LTT), and carbo-nitriding (CN). Magnetic force microscopy showed differences in magnetic domains between the matrix and carbides, while scanning Kelvin probe force microscopy (SKPFM) revealed a 90–200 mV Volta potential difference between the two phases. Corrosion progression was monitored on the nanoscale via SKPFM and in situ atomic force microscopy (AFM), revealing different corrosion modes among heat treatments that predicted bulk corrosion behavior in electrochemical testing. HTT outperforms LTT and CN in wear testing and thus is recommended for non-corrosive aerospace applications, whereas CN is recommended for corrosion-prone applications as it exhibits exceptional corrosion resistance. The results reported here support the use of scanning probe microscopy for predicting bulk corrosion behavior by measuring nanoscale surface differences in properties between carbides and the surrounding matrix. MDPI 2019-03-21 /pmc/articles/PMC6471104/ /pubmed/30901849 http://dx.doi.org/10.3390/ma12060940 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kvryan, Armen Efaw, Corey M. Higginbotham, Kari A. Maryon, Olivia O. Davis, Paul H. Graugnard, Elton Trivedi, Hitesh K. Hurley, Michael F. Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title | Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title_full | Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title_fullStr | Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title_full_unstemmed | Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title_short | Corrosion Initiation and Propagation on Carburized Martensitic Stainless Steel Surfaces Studied via Advanced Scanning Probe Microscopy |
title_sort | corrosion initiation and propagation on carburized martensitic stainless steel surfaces studied via advanced scanning probe microscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471104/ https://www.ncbi.nlm.nih.gov/pubmed/30901849 http://dx.doi.org/10.3390/ma12060940 |
work_keys_str_mv | AT kvryanarmen corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT efawcoreym corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT higginbothamkaria corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT maryonoliviao corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT davispaulh corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT graugnardelton corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT trivedihiteshk corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy AT hurleymichaelf corrosioninitiationandpropagationoncarburizedmartensiticstainlesssteelsurfacesstudiedviaadvancedscanningprobemicroscopy |