Cargando…

EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Padfield, Natasha, Zabalza, Jaime, Zhao, Huimin, Masero, Valentin, Ren, Jinchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/
https://www.ncbi.nlm.nih.gov/pubmed/30909489
http://dx.doi.org/10.3390/s19061423
Descripción
Sumario:Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.