Cargando…

EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges

Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Padfield, Natasha, Zabalza, Jaime, Zhao, Huimin, Masero, Valentin, Ren, Jinchang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/
https://www.ncbi.nlm.nih.gov/pubmed/30909489
http://dx.doi.org/10.3390/s19061423
_version_ 1783411983551299584
author Padfield, Natasha
Zabalza, Jaime
Zhao, Huimin
Masero, Valentin
Ren, Jinchang
author_facet Padfield, Natasha
Zabalza, Jaime
Zhao, Huimin
Masero, Valentin
Ren, Jinchang
author_sort Padfield, Natasha
collection PubMed
description Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs.
format Online
Article
Text
id pubmed-6471241
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64712412019-04-26 EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges Padfield, Natasha Zabalza, Jaime Zhao, Huimin Masero, Valentin Ren, Jinchang Sensors (Basel) Review Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper reviews state-of-the-art signal processing techniques for MI EEG-based BCIs, with a particular focus on the feature extraction, feature selection and classification techniques used. It also summarizes the main applications of EEG-based BCIs, particularly those based on MI data, and finally presents a detailed discussion of the most prevalent challenges impeding the development and commercialization of EEG-based BCIs. MDPI 2019-03-22 /pmc/articles/PMC6471241/ /pubmed/30909489 http://dx.doi.org/10.3390/s19061423 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Padfield, Natasha
Zabalza, Jaime
Zhao, Huimin
Masero, Valentin
Ren, Jinchang
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title_full EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title_fullStr EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title_full_unstemmed EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title_short EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
title_sort eeg-based brain-computer interfaces using motor-imagery: techniques and challenges
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/
https://www.ncbi.nlm.nih.gov/pubmed/30909489
http://dx.doi.org/10.3390/s19061423
work_keys_str_mv AT padfieldnatasha eegbasedbraincomputerinterfacesusingmotorimagerytechniquesandchallenges
AT zabalzajaime eegbasedbraincomputerinterfacesusingmotorimagerytechniquesandchallenges
AT zhaohuimin eegbasedbraincomputerinterfacesusingmotorimagerytechniquesandchallenges
AT maserovalentin eegbasedbraincomputerinterfacesusingmotorimagerytechniquesandchallenges
AT renjinchang eegbasedbraincomputerinterfacesusingmotorimagerytechniquesandchallenges