Cargando…
EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges
Electroencephalography (EEG)-based brain-computer interfaces (BCIs), particularly those using motor-imagery (MI) data, have the potential to become groundbreaking technologies in both clinical and entertainment settings. MI data is generated when a subject imagines the movement of a limb. This paper...
Autores principales: | Padfield, Natasha, Zabalza, Jaime, Zhao, Huimin, Masero, Valentin, Ren, Jinchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471241/ https://www.ncbi.nlm.nih.gov/pubmed/30909489 http://dx.doi.org/10.3390/s19061423 |
Ejemplares similares
-
EEG datasets for motor imagery brain–computer interface
por: Cho, Hohyun, et al.
Publicado: (2017) -
Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces
por: Wang, Deng, et al.
Publicado: (2012) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022) -
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
por: Zhu, Hao, et al.
Publicado: (2022) -
An Unsupervised Deep-Transfer-Learning-Based Motor Imagery EEG Classification Scheme for Brain–Computer Interface
por: Wang, Xuying, et al.
Publicado: (2022)