Cargando…
Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images
Detection of abnormalities in wireless capsule endoscopy (WCE) images is a challenging task. Typically, these images suffer from low contrast, complex background, variations in lesion shape and color, which affect the accuracy of their segmentation and subsequent classification. This research propos...
Autores principales: | Alaskar, Haya, Hussain, Abir, Al-Aseem, Nourah, Liatsis, Panos, Al-Jumeily, Dhiya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471286/ https://www.ncbi.nlm.nih.gov/pubmed/30871162 http://dx.doi.org/10.3390/s19061265 |
Ejemplares similares
-
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
por: Al-Jumeily, Dhiya, et al.
Publicado: (2014) -
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization
por: Wang, Sen, et al.
Publicado: (2019) -
Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis
por: Qin, Kaiwen, et al.
Publicado: (2021) -
Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering
por: Son, Geonhui, et al.
Publicado: (2022) -
Dataset of student level prediction in UAE
por: Ghareeb, Shatha, et al.
Publicado: (2021)