Cargando…
A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder
Accelerated construction in the form of steel–concrete composite beams is among the most efficient methods to construct highway bridges. One of the main problems with this type of composite structures, which has not yet been fully clarified in the case of continuous beam, is the crack zone initiatio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471295/ https://www.ncbi.nlm.nih.gov/pubmed/30909492 http://dx.doi.org/10.3390/ma12060964 |
_version_ | 1783411995991605248 |
---|---|
author | Gautam, Bishnu Gupt Xiang, Yi-Qiang Qiu, Zheng Guo, Shu-Hai |
author_facet | Gautam, Bishnu Gupt Xiang, Yi-Qiang Qiu, Zheng Guo, Shu-Hai |
author_sort | Gautam, Bishnu Gupt |
collection | PubMed |
description | Accelerated construction in the form of steel–concrete composite beams is among the most efficient methods to construct highway bridges. One of the main problems with this type of composite structures, which has not yet been fully clarified in the case of continuous beam, is the crack zone initiation that gradually expands through the beam width. In the current study, a semi-empirical model was proposed to predict the size of cracks in terms of small box girder deflection and intensity of load applied on the structure. To this end, a set of steel–concrete composite small box girders were constructed by the use of steel fibrous concrete and experimentally tested under different caseloads. The results were then used to create a dataset of the box girder response in terms of beam deflection and crack width. The obtained dataset was then utilized to develop a simplified formula providing the maximum width of cracks. The results showed that the cracks initiated in the hogging moment region when the load exceeded 80 kN. Additionally, it was observed that the maximum cracked zone occurred in the center of the beam due to the maximum negative moment. Moreover, the crack width of the box girder at different loading cases was compared with the test results obtained from the literature. A good agreement has been found between the proposed model and experiment results. |
format | Online Article Text |
id | pubmed-6471295 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64712952019-04-27 A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder Gautam, Bishnu Gupt Xiang, Yi-Qiang Qiu, Zheng Guo, Shu-Hai Materials (Basel) Article Accelerated construction in the form of steel–concrete composite beams is among the most efficient methods to construct highway bridges. One of the main problems with this type of composite structures, which has not yet been fully clarified in the case of continuous beam, is the crack zone initiation that gradually expands through the beam width. In the current study, a semi-empirical model was proposed to predict the size of cracks in terms of small box girder deflection and intensity of load applied on the structure. To this end, a set of steel–concrete composite small box girders were constructed by the use of steel fibrous concrete and experimentally tested under different caseloads. The results were then used to create a dataset of the box girder response in terms of beam deflection and crack width. The obtained dataset was then utilized to develop a simplified formula providing the maximum width of cracks. The results showed that the cracks initiated in the hogging moment region when the load exceeded 80 kN. Additionally, it was observed that the maximum cracked zone occurred in the center of the beam due to the maximum negative moment. Moreover, the crack width of the box girder at different loading cases was compared with the test results obtained from the literature. A good agreement has been found between the proposed model and experiment results. MDPI 2019-03-22 /pmc/articles/PMC6471295/ /pubmed/30909492 http://dx.doi.org/10.3390/ma12060964 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gautam, Bishnu Gupt Xiang, Yi-Qiang Qiu, Zheng Guo, Shu-Hai A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title | A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title_full | A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title_fullStr | A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title_full_unstemmed | A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title_short | A Semi-Empirical Deflection-Based Method for Crack Width Prediction in Accelerated Construction of Steel Fibrous High-Performance Composite Small Box Girder |
title_sort | semi-empirical deflection-based method for crack width prediction in accelerated construction of steel fibrous high-performance composite small box girder |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471295/ https://www.ncbi.nlm.nih.gov/pubmed/30909492 http://dx.doi.org/10.3390/ma12060964 |
work_keys_str_mv | AT gautambishnugupt asemiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT xiangyiqiang asemiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT qiuzheng asemiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT guoshuhai asemiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT gautambishnugupt semiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT xiangyiqiang semiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT qiuzheng semiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder AT guoshuhai semiempiricaldeflectionbasedmethodforcrackwidthpredictioninacceleratedconstructionofsteelfibroushighperformancecompositesmallboxgirder |