Cargando…
Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films †
Ultrathin Si films have a reduced thermal conductivity in comparison to Si bulk due to phonon scattering at the surfaces. Furthermore, the small thickness guarantees a reduced thermal mass (in the µJ/K range), which opens up the possibility of developing thermal sensors with a high sensitivity. Base...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471348/ https://www.ncbi.nlm.nih.gov/pubmed/30909519 http://dx.doi.org/10.3390/s19061427 |
_version_ | 1783412008238972928 |
---|---|
author | Gonçalves Dalkiranis, Gustavo Ferrando-Villalba, Pablo Lopeandia-Fernández, Aitor Abad-Muñoz, Llibertat Rodríguez-Viejo, Javier |
author_facet | Gonçalves Dalkiranis, Gustavo Ferrando-Villalba, Pablo Lopeandia-Fernández, Aitor Abad-Muñoz, Llibertat Rodríguez-Viejo, Javier |
author_sort | Gonçalves Dalkiranis, Gustavo |
collection | PubMed |
description | Ultrathin Si films have a reduced thermal conductivity in comparison to Si bulk due to phonon scattering at the surfaces. Furthermore, the small thickness guarantees a reduced thermal mass (in the µJ/K range), which opens up the possibility of developing thermal sensors with a high sensitivity. Based on these premises, a thermoelectric (TE) microsensor based on ultrathin suspended Si films was developed and used as a thermal photosensor. The photoresponse of the device was evaluated with an argon laser (λ = 457 nm) with a variable power ranging from 0 to 10 mW in air at atmospheric pressure, with laser diodes at 406 nm, 520 nm and 638 nm wavelengths, and fixed powers in high vacuum conditions. The responsivity per unit area, response time (τ) and detectivity (D*) of the device were determined in air at ambient pressure, being 2.6 × 10(7) V/Wm(2), ~4.3 ms and [Formula: see text] , respectively. Temperature differences up to 30 K between the central hot region and the Si frame were achieved during open-circuit voltage measurements, with and without laser diodes. During illumination, the photogeneration of carriers caused a slight reduction of the Seebeck coefficient, which did not significantly change the sensitivity of the device. Moreover, the measurements performed with light beam chopped at different frequencies evidenced the quick response of the device. The temperature gradients applied to the thermoelectric Si legs were corrected using finite element modeling (FEM) due to the non-flat temperature profile generated during the experiments. |
format | Online Article Text |
id | pubmed-6471348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64713482019-04-26 Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † Gonçalves Dalkiranis, Gustavo Ferrando-Villalba, Pablo Lopeandia-Fernández, Aitor Abad-Muñoz, Llibertat Rodríguez-Viejo, Javier Sensors (Basel) Article Ultrathin Si films have a reduced thermal conductivity in comparison to Si bulk due to phonon scattering at the surfaces. Furthermore, the small thickness guarantees a reduced thermal mass (in the µJ/K range), which opens up the possibility of developing thermal sensors with a high sensitivity. Based on these premises, a thermoelectric (TE) microsensor based on ultrathin suspended Si films was developed and used as a thermal photosensor. The photoresponse of the device was evaluated with an argon laser (λ = 457 nm) with a variable power ranging from 0 to 10 mW in air at atmospheric pressure, with laser diodes at 406 nm, 520 nm and 638 nm wavelengths, and fixed powers in high vacuum conditions. The responsivity per unit area, response time (τ) and detectivity (D*) of the device were determined in air at ambient pressure, being 2.6 × 10(7) V/Wm(2), ~4.3 ms and [Formula: see text] , respectively. Temperature differences up to 30 K between the central hot region and the Si frame were achieved during open-circuit voltage measurements, with and without laser diodes. During illumination, the photogeneration of carriers caused a slight reduction of the Seebeck coefficient, which did not significantly change the sensitivity of the device. Moreover, the measurements performed with light beam chopped at different frequencies evidenced the quick response of the device. The temperature gradients applied to the thermoelectric Si legs were corrected using finite element modeling (FEM) due to the non-flat temperature profile generated during the experiments. MDPI 2019-03-22 /pmc/articles/PMC6471348/ /pubmed/30909519 http://dx.doi.org/10.3390/s19061427 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gonçalves Dalkiranis, Gustavo Ferrando-Villalba, Pablo Lopeandia-Fernández, Aitor Abad-Muñoz, Llibertat Rodríguez-Viejo, Javier Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title | Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title_full | Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title_fullStr | Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title_full_unstemmed | Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title_short | Thermoelectric Photosensor Based on Ultrathin Single-Crystalline Si Films † |
title_sort | thermoelectric photosensor based on ultrathin single-crystalline si films † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471348/ https://www.ncbi.nlm.nih.gov/pubmed/30909519 http://dx.doi.org/10.3390/s19061427 |
work_keys_str_mv | AT goncalvesdalkiranisgustavo thermoelectricphotosensorbasedonultrathinsinglecrystallinesifilms AT ferrandovillalbapablo thermoelectricphotosensorbasedonultrathinsinglecrystallinesifilms AT lopeandiafernandezaitor thermoelectricphotosensorbasedonultrathinsinglecrystallinesifilms AT abadmunozllibertat thermoelectricphotosensorbasedonultrathinsinglecrystallinesifilms AT rodriguezviejojavier thermoelectricphotosensorbasedonultrathinsinglecrystallinesifilms |