Cargando…

Mass Surveilance of C. elegans—Smartphone-Based DIY Microscope and Machine-Learning-Based Approach for Worm Detection

The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of...

Descripción completa

Detalles Bibliográficos
Autores principales: Bornhorst, Julia, Nustede, Eike Jannik, Fudickar, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471353/
https://www.ncbi.nlm.nih.gov/pubmed/30917520
http://dx.doi.org/10.3390/s19061468
Descripción
Sumario:The nematode Caenorhabditis elegans (C. elegans) is often used as an alternative animal model due to several advantages such as morphological changes that can be seen directly under a microscope. Limitations of the model include the usage of expensive and cumbersome microscopes, and restrictions of the comprehensive use of C. elegans for toxicological trials. With the general applicability of the detection of C. elegans from microscope images via machine learning, as well as of smartphone-based microscopes, this article investigates the suitability of smartphone-based microscopy to detect C. elegans in a complete Petri dish. Thereby, the article introduces a smartphone-based microscope (including optics, lighting, and housing) for monitoring C. elegans and the corresponding classification via a trained Histogram of Oriented Gradients (HOG) feature-based Support Vector Machine for the automatic detection of C. elegans. Evaluation showed classification sensitivity of 0.90 and specificity of 0.85, and thereby confirms the general practicability of the chosen approach.