Cargando…
Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018
Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mod...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471358/ https://www.ncbi.nlm.nih.gov/pubmed/30901973 http://dx.doi.org/10.3390/molecules24061135 |
_version_ | 1783412010522771456 |
---|---|
author | Yu, Raymond B. Quirino, Joselito P. |
author_facet | Yu, Raymond B. Quirino, Joselito P. |
author_sort | Yu, Raymond B. |
collection | PubMed |
description | Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates. |
format | Online Article Text |
id | pubmed-6471358 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64713582019-04-26 Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 Yu, Raymond B. Quirino, Joselito P. Molecules Review Chiral separation is an important process in the chemical and pharmaceutical industries. From the analytical chemistry perspective, chiral separation is required for assessing the fit-for-purpose and the safety of chemical products. Capillary electrophoresis, in the electrokinetic chromatography mode is an established analytical technique for chiral separations. A water-soluble chiral selector is typically used. This review therefore examines the use of various chiral selectors in electrokinetic chromatography during 2017–2018. The chiral selectors were both low and high (macromolecules) molecular mass molecules as well as molecular aggregates (supramolecules). There were 58 papers found by search in Scopus, indicating continuous and active activity in this research area. The macromolecules were sugar-, amino acid-, and nucleic acid-based polymers. The supramolecules were bile salt micelles. The low molecular mass selectors were mainly ionic liquids and complexes with a central ion. A majority of the papers were on the use or preparation of sugar-based macromolecules, e.g., native or derivatised cyclodextrins. Studies to explain chiral recognition of macromolecular and supramolecular chiral selectors were mainly done by molecular modelling and nuclear magnetic resonance spectroscopy. Demonstrations were predominantly on drug analysis for the separation of racemates. MDPI 2019-03-21 /pmc/articles/PMC6471358/ /pubmed/30901973 http://dx.doi.org/10.3390/molecules24061135 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Yu, Raymond B. Quirino, Joselito P. Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title | Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title_full | Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title_fullStr | Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title_full_unstemmed | Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title_short | Chiral Selectors in Capillary Electrophoresis: Trends during 2017–2018 |
title_sort | chiral selectors in capillary electrophoresis: trends during 2017–2018 |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471358/ https://www.ncbi.nlm.nih.gov/pubmed/30901973 http://dx.doi.org/10.3390/molecules24061135 |
work_keys_str_mv | AT yuraymondb chiralselectorsincapillaryelectrophoresistrendsduring20172018 AT quirinojoselitop chiralselectorsincapillaryelectrophoresistrendsduring20172018 |