Cargando…
Data Trustworthiness Evaluation in Mobile Crowdsensing Systems with Users’ Trust Dispositions’ Consideration
Mobile crowdsensing is a powerful paradigm that exploits the advanced sensing capabilities and ubiquity of smartphones in order to collect and analyze data on a scale that is impossible with fixed sensor networks. Mobile crowdsensing systems incorporate people and rely on their participation and wil...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471370/ https://www.ncbi.nlm.nih.gov/pubmed/30884833 http://dx.doi.org/10.3390/s19061326 |
Sumario: | Mobile crowdsensing is a powerful paradigm that exploits the advanced sensing capabilities and ubiquity of smartphones in order to collect and analyze data on a scale that is impossible with fixed sensor networks. Mobile crowdsensing systems incorporate people and rely on their participation and willingness to contribute up-to-date and accurate information, meaning that such systems are prone to malicious and erroneous data. Therefore, trust and reputation are key factors that need to be addressed in order to ensure sustainability of mobile crowdsensing systems. The objective of this work is to define the conceptual trust framework that considers human involvement in mobile crowdsensing systems and takes into account that users contribute their opinions and other subjective data besides the raw sensing data generated by their smart devices. We propose a novel method to evaluate the trustworthiness of data contributed by users that also considers the subjectivity in the contributed data. The method is based on a comparison of users’ trust attitudes and applies nonparametric statistic methods. We have evaluated the performance of our method with extensive simulations and compared it to the method proposed by Huang that adopts Gompertz function for rating the contributions. The simulation results showed that our method outperforms Huang’s method by 28.6% on average and the method without data trustworthiness calculation by 33.6% on average in different simulation settings. |
---|