Cargando…

Evaluation of Properties and Microstructure of Cement Paste Blended with Metakaolin Subjected to High Temperatures

The effects of 10% metakaolin addition on compressive strength, water absorption, shrinkage and microstructure evolution of cement paste after elevated temperatures exposure from room temperature to 800 °C were evaluated. The experimental results show that compressive strength increases at 200 °C an...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wenqiang, Liu, Xinhao, Guo, Liang, Duan, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471423/
https://www.ncbi.nlm.nih.gov/pubmed/30901857
http://dx.doi.org/10.3390/ma12060941
Descripción
Sumario:The effects of 10% metakaolin addition on compressive strength, water absorption, shrinkage and microstructure evolution of cement paste after elevated temperatures exposure from room temperature to 800 °C were evaluated. The experimental results show that compressive strength increases at 200 °C and 400 °C compared with that obtained at ambient temperature. Up to 800 °C, compressive strength decreases rapidly. The addition of 10% metakaolin leads to the enhancement of compressive strength regardless of exposure temperatures. After thermal exposure at 400 °C, compressive strength reaches the maximum value. Thermal exposure degrades pore structure. A polynomial equation was used to indicate the shrinkage of cement paste or metakaolin-blended cement paste with testing days. Mechanical properties, permeability resistance, and shrinkage in cement pastes are closely related to the microstructure development. 10% metakaolin addition presents better thermal resistance, lower shrinkage and denser microstructure compared with pure cement paste before and after thermal exposure.