Cargando…

Sensors Information Fusion System with Fault Detection Based on Multi-Manifold Regularization Neighborhood Preserving Embedding

Electrical drive systems play an increasingly important role in high-speed trains. The whole system is equipped with sensors that support complicated information fusion, which means the performance around this system ought to be monitored especially during incipient changes. In such situation, it is...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jianping, Jiang, Bin, Chen, Hongtian, Liu, Jianwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471429/
https://www.ncbi.nlm.nih.gov/pubmed/30909601
http://dx.doi.org/10.3390/s19061440
Descripción
Sumario:Electrical drive systems play an increasingly important role in high-speed trains. The whole system is equipped with sensors that support complicated information fusion, which means the performance around this system ought to be monitored especially during incipient changes. In such situation, it is crucial to distinguish faulty state from observed normal state because of the dire consequences closed-loop faults might bring. In this research, an optimal neighborhood preserving embedding (NPE) method called multi-manifold regularization NPE (MMRNPE) is proposed to detect various faults in an electrical drive sensor information fusion system. By taking locality preserving embedding into account, the proposed methodology extends the united application of Euclidean distance of both designated points and paired points, which guarantees the access to both local and global sensor information. Meanwhile, this structure fuses several manifolds to extract their own features. In addition, parameters are allocated in diverse manifolds to seek an optimal combination of manifolds while entropy of information with parameters is also selected to avoid the overweight of single manifold. Moreover, an experimental test based on the platform was built to validate the MMRNPE approach and demonstrate the effectiveness of the fault detection. Results and observations show that the proposed MMRNPE offers a better fault detection representation in comparison with NPE.