Cargando…
Sensors Information Fusion System with Fault Detection Based on Multi-Manifold Regularization Neighborhood Preserving Embedding
Electrical drive systems play an increasingly important role in high-speed trains. The whole system is equipped with sensors that support complicated information fusion, which means the performance around this system ought to be monitored especially during incipient changes. In such situation, it is...
Autores principales: | Wu, Jianping, Jiang, Bin, Chen, Hongtian, Liu, Jianwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471429/ https://www.ncbi.nlm.nih.gov/pubmed/30909601 http://dx.doi.org/10.3390/s19061440 |
Ejemplares similares
-
Fault diagnosis of gearbox based on Fourier Bessel EWT and manifold regularization ELM
por: Wang, Ke, et al.
Publicado: (2023) -
Fault Diagnosis of PMSMs Based on Image Features of Multi-Sensor Fusion
por: Wang, Jianping, et al.
Publicado: (2023) -
Gear Fault Diagnosis Method Based on Multi-Sensor Information Fusion and VGG
por: Huo, Dongyue, et al.
Publicado: (2022) -
Fault Diagnosis of Rotating Machinery Using Kernel Neighborhood Preserving Embedding and a Modified Sparse Bayesian Classification Model
por: Lu, Lixin, et al.
Publicado: (2023) -
Embeddings in manifolds
por: Daverman, Robert J, et al.
Publicado: (2009)