Cargando…

Power-Frequency Electric Field Sensing Utilizing a Twin-FBG Fabry–Perot Interferometer and Polyimide Tubing with Space Charge as Field Sensing Element †

A novel fiber-optic sensor based on the alternating electric field force actions on polyimide tubing with space charge for power-frequency electric field sensing is presented. In structure, the sensor consists of a lightweight fiber cantilever beam covered with a length of electrically charged polyi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lutang, Fang, Nian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471448/
https://www.ncbi.nlm.nih.gov/pubmed/30934612
http://dx.doi.org/10.3390/s19061456
Descripción
Sumario:A novel fiber-optic sensor based on the alternating electric field force actions on polyimide tubing with space charge for power-frequency electric field sensing is presented. In structure, the sensor consists of a lightweight fiber cantilever beam covered with a length of electrically charged polyimide tubing as the field sensing element. A twin-FBG based Fabry–Perot interferometer is embedded in this fiber beam to detect the beam vibrations excited by the force of power-frequency electric field to be sensed. Space charge in polyimide tubing is formed through a dielectric charging process. The basic concept, structure, fabrication and operation principle of the sensor are introduced with detailed theoretical analyses. The comprehensive experiments with two sensor prototypes are carried out, in which a sensor exhibits a high sensitivity of 173.65 μV/(V/m) with a minimal detectable field strength of 0.162 V/m, and another has a durability of continuous operation for over a year.