Cargando…
Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks
Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. The decentralized classification fusion problem was the reason to use the belief function-based decision fusion appr...
Autores principales: | Javaid, Atia, Javaid, Nadeem, Wadud, Zahid, Saba, Tanzila, Sheta, Osama E., Saleem, Muhammad Qaiser, Alzahrani, Mohammad Eid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471498/ https://www.ncbi.nlm.nih.gov/pubmed/30884880 http://dx.doi.org/10.3390/s19061334 |
Ejemplares similares
-
Fault Detection in Wireless Sensor Networks through the Random Forest Classifier
por: Noshad, Zainib, et al.
Publicado: (2019) -
Mobile Sinks Assisted Geographic and Opportunistic Routing Based Interference Avoidance for Underwater Wireless Sensor Network
por: Ahmed, Farwa, et al.
Publicado: (2018) -
Lifetime Maximization via Hole Alleviation in IoT Enabling Heterogeneous Wireless Sensor Networks
por: Wadud, Zahid, et al.
Publicado: (2017) -
Correction: RCER: Reliable Cluster-based Energy-aware Routing protocol for heterogeneous Wireless Sensor Networks
por: Haseeb, Khalid, et al.
Publicado: (2019) -
Belief Function Based Decision Fusion for Decentralized Target Classification in Wireless Sensor Networks
por: Zhang, Wenyu, et al.
Publicado: (2015)