Cargando…
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data
It is very significant to explore the intrinsic differences in breast cancer subtypes. These intrinsic differences are closely related to clinical diagnosis and designation of treatment plans. With the accumulation of biological and medicine datasets, there are many different omics data that can be...
Autores principales: | Tao, Mingxin, Song, Tianci, Du, Wei, Han, Siyu, Zuo, Chunman, Li, Ying, Wang, Yan, Yang, Zekun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471546/ https://www.ncbi.nlm.nih.gov/pubmed/30866472 http://dx.doi.org/10.3390/genes10030200 |
Ejemplares similares
-
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
A feature selection method based on multiple kernel learning with expression profiles of different types
por: Du, Wei, et al.
Publicado: (2017) -
Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data
por: Lin, Yuqi, et al.
Publicado: (2020) -
Insights from Classifying Visual Concepts with Multiple Kernel Learning
por: Binder, Alexander, et al.
Publicado: (2012) -
Multiple kernel learning for integrative consensus clustering of omic datasets
por: Cabassi, Alessandra, et al.
Publicado: (2020)