Cargando…
A Method for Estimating Time-Dependent Corrosion Depth of Carbon and Weathering Steel Using an Atmospheric Corrosion Monitor Sensor
In this study, a time-dependent corrosion depth estimation method using atmospheric corrosion monitor (ACM) sensor data to evaluate time-dependent corrosion behaviors is proposed. For the time-dependent corrosion depth estimation of uncoated carbon steel and weathering steel, acceleration corrosion...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471583/ https://www.ncbi.nlm.nih.gov/pubmed/30909427 http://dx.doi.org/10.3390/s19061416 |
Sumario: | In this study, a time-dependent corrosion depth estimation method using atmospheric corrosion monitor (ACM) sensor data to evaluate time-dependent corrosion behaviors is proposed. For the time-dependent corrosion depth estimation of uncoated carbon steel and weathering steel, acceleration corrosion tests were conducted in salt-spray corrosion environments and evaluated with a corrosion damage estimation method using ACM sensing data and corrosion loss data of the tested steel specimens. To estimate the time-dependent corrosion depth using corrosion current by an ACM sensor, the relationship between the mean corrosion depth calculated from the weight loss method and the corrosion current was evaluated. The mean corrosion depth was estimated by calculating the corrosion current and evaluating the relationship between the mean corrosion depth and corrosion current during the expected period. From the test and estimation results, the corrosion current demonstrated a good linear correlation with the mean corrosion depth of carbon steel and weathering. The calculated mean corrosion depth is nearly the same as that of the tested specimen, which can be well used to estimate corrosion rate for the uncoated carbon steel and weathering steel. |
---|