Cargando…
Group Lasso Regularized Deep Learning for Cancer Prognosis from Multi-Omics and Clinical Features
Accurate prognosis of patients with cancer is important for the stratification of patients, the optimization of treatment strategies, and the design of clinical trials. Both clinical features and molecular data can be used for this purpose, for instance, to predict the survival of patients censored...
Autores principales: | Xie, Gangcai, Dong, Chengliang, Kong, Yinfei, Zhong, Jiang F., Li, Mingyao, Wang, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471789/ https://www.ncbi.nlm.nih.gov/pubmed/30901858 http://dx.doi.org/10.3390/genes10030240 |
Ejemplares similares
-
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
CondenseNet with exclusive lasso regularization
por: Ji, Lizhen, et al.
Publicado: (2021) -
Regularized group regression methods for genomic prediction: Bridge, MCP, SCAD, group bridge, group lasso, sparse group lasso, group MCP and group SCAD
por: Ogutu, Joseph O, et al.
Publicado: (2014) -
Identification of functionally connected multi-omic biomarkers for Alzheimer’s disease using modularity-constrained Lasso
por: Xie, Linhui, et al.
Publicado: (2020) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022)