Cargando…
Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry
Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471979/ https://www.ncbi.nlm.nih.gov/pubmed/30871257 http://dx.doi.org/10.3390/molecules24061013 |
_version_ | 1783412149662515200 |
---|---|
author | Kaur, Ramandeep Kaur, Ripneel Rani, Susheela Malik, Ashok Kumar Kabir, Abuzar Furton, Kenneth G. Samanidou, Victoria F. |
author_facet | Kaur, Ramandeep Kaur, Ripneel Rani, Susheela Malik, Ashok Kumar Kabir, Abuzar Furton, Kenneth G. Samanidou, Victoria F. |
author_sort | Kaur, Ramandeep |
collection | PubMed |
description | Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and water samples. FPSE consolidates the advanced features of sol-gel derived extraction sorbents with the rich surface chemistry of cellulose fabric substrate, which could extract the target analytes directly from the complex sample matrices, substantially simplifying the sample preparation operation. Important FPSE parameters, including sorbent chemistry, extraction time, stirring speed, type and volume of back-extraction solvent, and back-extraction time have been optimized. Calibration curves were obtained in a concentration range of 0.1–500 ng/mL. Under optimum conditions, limits of detection were obtained in a range of 0.007–0.032 ng/mL with satisfactory precision (RSD < 6%). The relative recoveries obtained by spiking organochlorine pesticides in water and selected juice samples were in the range of 91.56–99.83%. The sorbent sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) was applied for the extraction and preconcentration of organochlorine pesticides in aqueous and fruit juice samples prior to analysis with gas chromatography-mass spectrometry. The results demonstrated that the present method is simple, rapid, and precise for the determination of organochlorine pesticides in aqueous samples. |
format | Online Article Text |
id | pubmed-6471979 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64719792019-04-26 Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry Kaur, Ramandeep Kaur, Ripneel Rani, Susheela Malik, Ashok Kumar Kabir, Abuzar Furton, Kenneth G. Samanidou, Victoria F. Molecules Article Fabric phase sorptive extraction, an innovative integration of solid phase extraction and solid phase microextraction principles, has been combined with gas chromatography-mass spectrometry for the rapid extraction and determination of nineteen organochlorine pesticides in various fruit juices and water samples. FPSE consolidates the advanced features of sol-gel derived extraction sorbents with the rich surface chemistry of cellulose fabric substrate, which could extract the target analytes directly from the complex sample matrices, substantially simplifying the sample preparation operation. Important FPSE parameters, including sorbent chemistry, extraction time, stirring speed, type and volume of back-extraction solvent, and back-extraction time have been optimized. Calibration curves were obtained in a concentration range of 0.1–500 ng/mL. Under optimum conditions, limits of detection were obtained in a range of 0.007–0.032 ng/mL with satisfactory precision (RSD < 6%). The relative recoveries obtained by spiking organochlorine pesticides in water and selected juice samples were in the range of 91.56–99.83%. The sorbent sol-gel poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) was applied for the extraction and preconcentration of organochlorine pesticides in aqueous and fruit juice samples prior to analysis with gas chromatography-mass spectrometry. The results demonstrated that the present method is simple, rapid, and precise for the determination of organochlorine pesticides in aqueous samples. MDPI 2019-03-13 /pmc/articles/PMC6471979/ /pubmed/30871257 http://dx.doi.org/10.3390/molecules24061013 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kaur, Ramandeep Kaur, Ripneel Rani, Susheela Malik, Ashok Kumar Kabir, Abuzar Furton, Kenneth G. Samanidou, Victoria F. Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title | Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title_full | Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title_fullStr | Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title_full_unstemmed | Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title_short | Rapid Monitoring of Organochlorine Pesticide Residues in Various Fruit Juices and Water Samples Using Fabric Phase Sorptive Extraction and Gas Chromatography-Mass Spectrometry |
title_sort | rapid monitoring of organochlorine pesticide residues in various fruit juices and water samples using fabric phase sorptive extraction and gas chromatography-mass spectrometry |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471979/ https://www.ncbi.nlm.nih.gov/pubmed/30871257 http://dx.doi.org/10.3390/molecules24061013 |
work_keys_str_mv | AT kaurramandeep rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT kaurripneel rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT ranisusheela rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT malikashokkumar rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT kabirabuzar rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT furtonkennethg rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry AT samanidouvictoriaf rapidmonitoringoforganochlorinepesticideresiduesinvariousfruitjuicesandwatersamplesusingfabricphasesorptiveextractionandgaschromatographymassspectrometry |