Cargando…

A Compact UWB Antenna with Independently Controllable Notch Bands

A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meander...

Descripción completa

Detalles Bibliográficos
Autores principales: Iqbal, Amjad, Smida, Amor, Mallat, Nazih Khaddaj, Islam, Mohammad Tariqul, Kim, Sunghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471990/
https://www.ncbi.nlm.nih.gov/pubmed/30909414
http://dx.doi.org/10.3390/s19061411
Descripción
Sumario:A minimally-sized, triple-notched band ultra-wideband (UWB) antenna, useful for many applications, is designed, analyzed, and experimentally validated in this paper. A modified maple leaf-shaped main radiating element with partial ground is used in the proposed design. An E-shaped resonator, meandered slot, and U-shaped slot are implemented in the proposed design to block the co-existing bands. The E-shaped resonator stops frequencies ranging from 1.8–2.3 GHz (Advanced Wireless System (AWS1–AWS2) band), while the meandered slot blocks frequencies from 3.2–3.8 GHz (WiMAX band). The co-existing band ranging from 5.6–6.1 GHz (IEEE 802.11/HIPERLANband) is blocked by utilizing the U-shaped section in the feeding network. The notched bands can be independently controlled over a wide range of frequencies using specific parameters. The proposed antenna is suitable for many applications because of its flat gain, good radiation characteristics at both principal planes, uniform group delay, and non-varying transfer function ([Formula: see text]) for the entire UWB frequency range.