Cargando…

A novel compound heterozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature

Familial renal glucosuria (FRG) is a rare condition that involves isolated glucosuria despite normal blood glucose levels. Mutations in the solute carrier family 5 member 2 (SLC5A2) gene, which encodes sodium-glucose cotransporter 2 (SGLT2), have been reported to be responsible for the disease. Gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shentang, Yang, Yeyi, Huang, Lihua, Kong, Min, Yang, Zuocheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472135/
https://www.ncbi.nlm.nih.gov/pubmed/30942416
http://dx.doi.org/10.3892/mmr.2019.10110
Descripción
Sumario:Familial renal glucosuria (FRG) is a rare condition that involves isolated glucosuria despite normal blood glucose levels. Mutations in the solute carrier family 5 member 2 (SLC5A2) gene, which encodes sodium-glucose cotransporter 2 (SGLT2), have been reported to be responsible for the disease. Genetic testing of the SLC5A2 gene was conducted in a Chinese family with FRG. A number of online tools were used to predict the potential effect of the identified mutations on SGLT2 function. Additionally, the SLC5A2 mutations previously reported in PubMed were summarized. A novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene in a Chinese child with FRG was identified. In total, 86 mutations of the SLC5A2 gene have been reported to be associated with FRG. The novel compound heterozygous mutation (c.514T>C, p.W172R; c.1540C>T, p.P514S) of the SLC5A2 gene may be responsible for the onset of FRG. The present study provides a starting point for further investigation of the molecular pathogenesis of the SLC5A2 gene mutation in patients with FRG.