Cargando…
ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer
Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472429/ https://www.ncbi.nlm.nih.gov/pubmed/31000713 http://dx.doi.org/10.1038/s41467-019-09803-9 |
_version_ | 1783412245994143744 |
---|---|
author | Chen, Wanze Schwalie, Petra C. Pankevich, Eugenia V. Gubelmann, Carine Raghav, Sunil K. Dainese, Riccardo Cassano, Marco Imbeault, Michael Jang, Suk Min Russeil, Julie Delessa, Tenagne Duc, Julien Trono, Didier Wolfrum, Christian Deplancke, Bart |
author_facet | Chen, Wanze Schwalie, Petra C. Pankevich, Eugenia V. Gubelmann, Carine Raghav, Sunil K. Dainese, Riccardo Cassano, Marco Imbeault, Michael Jang, Suk Min Russeil, Julie Delessa, Tenagne Duc, Julien Trono, Didier Wolfrum, Christian Deplancke, Bart |
author_sort | Chen, Wanze |
collection | PubMed |
description | Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner. |
format | Online Article Text |
id | pubmed-6472429 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-64724292019-04-19 ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer Chen, Wanze Schwalie, Petra C. Pankevich, Eugenia V. Gubelmann, Carine Raghav, Sunil K. Dainese, Riccardo Cassano, Marco Imbeault, Michael Jang, Suk Min Russeil, Julie Delessa, Tenagne Duc, Julien Trono, Didier Wolfrum, Christian Deplancke, Bart Nat Commun Article Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner. Nature Publishing Group UK 2019-04-18 /pmc/articles/PMC6472429/ /pubmed/31000713 http://dx.doi.org/10.1038/s41467-019-09803-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Chen, Wanze Schwalie, Petra C. Pankevich, Eugenia V. Gubelmann, Carine Raghav, Sunil K. Dainese, Riccardo Cassano, Marco Imbeault, Michael Jang, Suk Min Russeil, Julie Delessa, Tenagne Duc, Julien Trono, Didier Wolfrum, Christian Deplancke, Bart ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title | ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title_full | ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title_fullStr | ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title_full_unstemmed | ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title_short | ZFP30 promotes adipogenesis through the KAP1-mediated activation of a retrotransposon-derived Pparg2 enhancer |
title_sort | zfp30 promotes adipogenesis through the kap1-mediated activation of a retrotransposon-derived pparg2 enhancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472429/ https://www.ncbi.nlm.nih.gov/pubmed/31000713 http://dx.doi.org/10.1038/s41467-019-09803-9 |
work_keys_str_mv | AT chenwanze zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT schwaliepetrac zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT pankevicheugeniav zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT gubelmanncarine zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT raghavsunilk zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT dainesericcardo zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT cassanomarco zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT imbeaultmichael zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT jangsukmin zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT russeiljulie zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT delessatenagne zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT ducjulien zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT tronodidier zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT wolfrumchristian zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer AT deplanckebart zfp30promotesadipogenesisthroughthekap1mediatedactivationofaretrotransposonderivedpparg2enhancer |