Cargando…
Ionospheric GNSS Imagery of Seismic Source: Possibilities, Difficulties, and Challenges
Up to now, the possibility to obtain images of seismic source from ionospheric Global Navigation Satellite Systems (GNSS) measurements (seismo‐ionospheric imagery) has only been demonstrated for giant earthquakes with moment magnitude Mw ≥ 9.0. In this work, we discuss difficulties and restrictions...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472473/ https://www.ncbi.nlm.nih.gov/pubmed/31008005 http://dx.doi.org/10.1029/2018JA026107 |
Sumario: | Up to now, the possibility to obtain images of seismic source from ionospheric Global Navigation Satellite Systems (GNSS) measurements (seismo‐ionospheric imagery) has only been demonstrated for giant earthquakes with moment magnitude Mw ≥ 9.0. In this work, we discuss difficulties and restrictions of this method, and we apply for the first time the seismo‐ionospheric imagery for smaller earthquakes. The latter is done on the example of the Mw7.4 Sanriku‐oki earthquake of 9 March 2011. Analysis of 1‐Hz data of total electron content (TEC) shows that the first coseismic ionospheric disturbances (CID) occur ~470–480 s after the earthquake as TEC enhancement on the east‐northeast from the epicenter. The location of these first CID arrivals corresponds to the location of the coseismic uplift that is known as the source of tsunamis. Our results confirm that despite several difficulties and limitations, high‐rate ionospheric GNSS data can be used for determining the seismic source parameters for both giant and smaller/moderate earthquakes. In addition to these seismo‐ionospheric applications, we raise several fundamental questions on CID nature and evolution, namely, one of the most challenging queries—can moderate earthquake generate shock‐acoustic waves? |
---|