Cargando…
Machine learning accurately classifies age of toddlers based on eye tracking
How people extract visual information from complex scenes provides important information about cognitive processes. Eye tracking studies that have used naturalistic, rather than highly controlled experimental stimuli, reveal that variability in looking behavior is determined by bottom-up image prope...
Autores principales: | Dalrymple, Kirsten A., Jiang, Ming, Zhao, Qi, Elison, Jed T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472500/ https://www.ncbi.nlm.nih.gov/pubmed/31000762 http://dx.doi.org/10.1038/s41598-019-42764-z |
Ejemplares similares
-
Rapid face orienting in infants and school-age children with and without autism: Exploring measurement invariance in eye-tracking
por: Dalrymple, Kirsten A., et al.
Publicado: (2018) -
An Examination of Recording Accuracy and Precision From Eye Tracking Data From Toddlerhood to Adulthood
por: Dalrymple, Kirsten A., et al.
Publicado: (2018) -
Different Eye Tracking Patterns in Autism Spectrum Disorder in Toddler and Preschool Children
por: Kong, Xue-Jun, et al.
Publicado: (2022) -
Machine Learning Techniques Accurately Classify Microbial Communities by Bacterial Vaginosis Characteristics
por: Beck, Daniel, et al.
Publicado: (2014) -
Concurrent development of facial identity and expression discrimination
por: Dalrymple, Kirsten A., et al.
Publicado: (2017)