Cargando…
Recurrently exploring class-wise attention in a hybrid convolutional and bidirectional LSTM network for multi-label aerial image classification
Aerial image classification is of great significance in the remote sensing community, and many researches have been conducted over the past few years. Among these studies, most of them focus on categorizing an image into one semantic label, while in the real world, an aerial image is often associate...
Autores principales: | Hua, Yuansheng, Mou, Lichao, Zhu, Xiao Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472542/ https://www.ncbi.nlm.nih.gov/pubmed/31007387 http://dx.doi.org/10.1016/j.isprsjprs.2019.01.015 |
Ejemplares similares
-
Hybrid attention-based temporal convolutional bidirectional LSTM approach for wind speed interval prediction
por: Bommidi, Bala Saibabu, et al.
Publicado: (2023) -
Real-Time Monitoring for Hydraulic States Based on Convolutional Bidirectional LSTM with Attention Mechanism
por: Kim, Kyutae, et al.
Publicado: (2020) -
Bidirectional convolutional LSTM for the prediction of nitrogen dioxide in the city of Madrid
por: Iskandaryan, Ditsuhi, et al.
Publicado: (2022) -
Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism
por: Casabianca, Pietro, et al.
Publicado: (2021) -
Classification of Drowsiness Levels Based on a Deep Spatio-Temporal Convolutional Bidirectional LSTM Network Using Electroencephalography Signals
por: Jeong, Ji-Hoon, et al.
Publicado: (2019)