Cargando…
Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction
The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back‐arc basins is difficult to reconcile with this notion. Through comparison of the te...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472563/ https://www.ncbi.nlm.nih.gov/pubmed/31007341 http://dx.doi.org/10.1029/2018TC005036 |
_version_ | 1783412264811888640 |
---|---|
author | Jolivet, Laurent Faccenna, Claudio Becker, Thorsten Tesauro, Magdala Sternai, Pietro Bouilhol, Pierre |
author_facet | Jolivet, Laurent Faccenna, Claudio Becker, Thorsten Tesauro, Magdala Sternai, Pietro Bouilhol, Pierre |
author_sort | Jolivet, Laurent |
collection | PubMed |
description | The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back‐arc basins is difficult to reconcile with this notion. Through comparison of the tectonic and kinematic records of the last 50 Ma with seismic tomography and anisotropy models, we show that the closure of the former Tethys Ocean and the extensional deformation of East Asia can be best explained if the asthenospheric mantle transporting India northward, forming the Himalaya and the Tibetan Plateau, reaches East Asia where it overrides the westward flowing Pacific mantle and contributes to subduction dynamics, distributing extensional deformation over a 3,000‐km wide region. This deep asthenospheric flow partly controls the compressional stresses transmitted through the continent‐continent collision, driving crustal thickening below the Himalayas and Tibet and the propagation of strike‐slip faults across Asian lithosphere further north and east, as well as with the lithospheric and crustal flow powered by slab retreat east of the collision zone below East and SE Asia. The main shortening direction in the deforming continent between the collision zone and the Pacific subduction zones may in this case be a proxy for the direction of flow in the asthenosphere underneath, which may become a useful tool for studying mantle flow in the distant past. Our model of the India‐Asia collision emphasizes the role of asthenospheric flow underneath continents and may offer alternative ways of understanding tectonic processes. |
format | Online Article Text |
id | pubmed-6472563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64725632019-04-19 Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction Jolivet, Laurent Faccenna, Claudio Becker, Thorsten Tesauro, Magdala Sternai, Pietro Bouilhol, Pierre Tectonics Research Articles The formation of mountain belts or rift zones is commonly attributed to interactions between plates along their boundaries, but the widely distributed deformation of Asia from Himalaya to the Japan Sea and other back‐arc basins is difficult to reconcile with this notion. Through comparison of the tectonic and kinematic records of the last 50 Ma with seismic tomography and anisotropy models, we show that the closure of the former Tethys Ocean and the extensional deformation of East Asia can be best explained if the asthenospheric mantle transporting India northward, forming the Himalaya and the Tibetan Plateau, reaches East Asia where it overrides the westward flowing Pacific mantle and contributes to subduction dynamics, distributing extensional deformation over a 3,000‐km wide region. This deep asthenospheric flow partly controls the compressional stresses transmitted through the continent‐continent collision, driving crustal thickening below the Himalayas and Tibet and the propagation of strike‐slip faults across Asian lithosphere further north and east, as well as with the lithospheric and crustal flow powered by slab retreat east of the collision zone below East and SE Asia. The main shortening direction in the deforming continent between the collision zone and the Pacific subduction zones may in this case be a proxy for the direction of flow in the asthenosphere underneath, which may become a useful tool for studying mantle flow in the distant past. Our model of the India‐Asia collision emphasizes the role of asthenospheric flow underneath continents and may offer alternative ways of understanding tectonic processes. John Wiley and Sons Inc. 2018-09-06 2018-09 /pmc/articles/PMC6472563/ /pubmed/31007341 http://dx.doi.org/10.1029/2018TC005036 Text en ©2018. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Jolivet, Laurent Faccenna, Claudio Becker, Thorsten Tesauro, Magdala Sternai, Pietro Bouilhol, Pierre Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title | Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title_full | Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title_fullStr | Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title_full_unstemmed | Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title_short | Mantle Flow and Deforming Continents: From India‐Asia Convergence to Pacific Subduction |
title_sort | mantle flow and deforming continents: from india‐asia convergence to pacific subduction |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472563/ https://www.ncbi.nlm.nih.gov/pubmed/31007341 http://dx.doi.org/10.1029/2018TC005036 |
work_keys_str_mv | AT jolivetlaurent mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction AT faccennaclaudio mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction AT beckerthorsten mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction AT tesauromagdala mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction AT sternaipietro mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction AT bouilholpierre mantleflowanddeformingcontinentsfromindiaasiaconvergencetopacificsubduction |