Cargando…
Spatial mapping with Gaussian processes and nonstationary Fourier features
The use of covariance kernels is ubiquitous in the field of spatial statistics. Kernels allow data to be mapped into high-dimensional feature spaces and can thus extend simple linear additive methods to nonlinear methods with higher order interactions. However, until recently, there has been a stron...
Autores principales: | Ton, Jean-Francois, Flaxman, Seth, Sejdinovic, Dino, Bhatt, Samir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472673/ https://www.ncbi.nlm.nih.gov/pubmed/31008043 http://dx.doi.org/10.1016/j.spasta.2018.02.002 |
Ejemplares similares
-
An algorithm to simulate nonstationary and non-Gaussian stochastic processes
por: Hong, H. P., et al.
Publicado: (2021) -
A perspective on Gaussian processes for Earth observation
por: Camps-Valls, Gustau, et al.
Publicado: (2019) -
Detecting and quantifying causal associations in large nonlinear time series datasets
por: Runge, Jakob, et al.
Publicado: (2019) -
Modelling Nonstationary Gene Regulatory Processes
por: Grzegorcyzk, Marco, et al.
Publicado: (2010) -
Unrepresentative big surveys significantly overestimated US vaccine uptake
por: Bradley, Valerie C., et al.
Publicado: (2021)