Cargando…

10-undecynoic acid is a new anti-adherent agent killing biofilm of oral Streptococcus spp.

In the search for novel agents against oral pathogens in their planktonic and biofilm form, we have focused our attention on 10-undecynoic acid as the representative of the acetylenic fatty acids. Using macro-broth susceptibility testing method we first established MIC value. Next, the MBC value was...

Descripción completa

Detalles Bibliográficos
Autores principales: Goc, Anna, Sumera, Waldemar, Niedzwiecki, Aleksandra, Rath, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6472753/
https://www.ncbi.nlm.nih.gov/pubmed/30998699
http://dx.doi.org/10.1371/journal.pone.0214763
Descripción
Sumario:In the search for novel agents against oral pathogens in their planktonic and biofilm form, we have focused our attention on 10-undecynoic acid as the representative of the acetylenic fatty acids. Using macro-broth susceptibility testing method we first established MIC value. Next, the MBC value was determined from a broth dilution minimum inhibitory concentration test by sub-culturing it to BHI agar plates that did not contain the test agent. Anti-biofilm efficacy was tested in 96-well plates coated with saliva using BHI broth supplemented with 1% sucrose as a standard approach. Based on obtained results, MIC value for 10-undecynoic acid was established to be 2.5 mg/ml and the MBC value to be 5 mg/ml. The MBIC(90) showed to be 2.5 mg/ml, however completed inhibition of biofilm formation was achieved at 5.0 mg/ml. MBBC concentration revealed to be the same as MBC value, causing approximately 30% reduction at the same time in biomass of pre-existing biofilm, whereas application of 7.0 mg/ml of 10-undecynoic acid crossed the 50% eradication mark. Strong anti-adherent effect was observed upon 10-undecynoic acid application at sub-MBC concentrations as well, complemented with suppression of acidogenicity and aciduricity. Thus, we concluded that 10-undecynoic acid might play an important role in the development of alternative or adjunctive antibacterial and anti-biofilm preventive and/or therapeutic approaches.