Cargando…
Measuring social, environmental and health inequalities using deep learning and street imagery
Cities are home to an increasing majority of the world’s population. Currently, it is difficult to track social, economic, environmental and health outcomes in cities with high spatial and temporal resolution, needed to evaluate policies regarding urban inequalities. We applied a deep learning appro...
Autores principales: | Suel, Esra, Polak, John W., Bennett, James E., Ezzati, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473002/ https://www.ncbi.nlm.nih.gov/pubmed/31000744 http://dx.doi.org/10.1038/s41598-019-42036-w |
Ejemplares similares
-
Multimodal deep learning from satellite and street-level imagery for measuring income, overcrowding, and environmental deprivation in urban areas
por: Suel, Esra, et al.
Publicado: (2021) -
A Deep Learning Approach for Meter-Scale Air Quality Estimation in Urban Environments Using Very High-Spatial-Resolution Satellite Imagery
por: Sorek-Hamer, Meytar, et al.
Publicado: (2022) -
Characterisation of urban environment and activity across space and time using street images and deep learning in Accra
por: Nathvani, Ricky, et al.
Publicado: (2022) -
What you see is what you breathe? Estimating air pollution spatial variation using street level imagery
por: Suel, Esra, et al.
Publicado: (2022) -
Beyond here and now: evaluating pollution estimation across space and time from street view images with deep learning
por: Nathvani, Ricky, et al.
Publicado: (2023)