Cargando…
A Selective Review of Multi-Level Omics Data Integration Using Variable Selection
High-throughput technologies have been used to generate a large amount of omics data. In the past, single-level analysis has been extensively conducted where the omics measurements at different levels, including mRNA, microRNA, CNV and DNA methylation, are analyzed separately. As the molecular compl...
Autores principales: | Wu, Cen, Zhou, Fei, Ren, Jie, Li, Xiaoxi, Jiang, Yu, Ma, Shuangge |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473252/ https://www.ncbi.nlm.nih.gov/pubmed/30669303 http://dx.doi.org/10.3390/ht8010004 |
Ejemplares similares
-
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data
por: Zhou, Fei, et al.
Publicado: (2023) -
Penalized Variable Selection for Lipid–Environment Interactions in a Longitudinal Lipidomics Study
por: Zhou, Fei, et al.
Publicado: (2019) -
Integrative Analysis of Cancer Omics Data for Prognosis Modeling
por: Wang, Shuaichao, et al.
Publicado: (2019) -
Horizontal and vertical integrative analysis methods for mental disorders omics data
por: Wang, Shuaichao, et al.
Publicado: (2019) -
Integrating Multi–Omics Data for Gene-Environment Interactions
por: Du, Yinhao, et al.
Publicado: (2021)