Cargando…
Prediction of Acquired Taxane Resistance Using a Personalized Pathway-Based Machine Learning Method
PURPOSE: This study was conducted to develop and validate an individualized prediction model for automated detection of acquired taxane resistance (ATR). MATERIALS AND METHODS: Penalized regression, combinedwith an individualized pathway score algorithm,was applied to construct a predictive model us...
Autores principales: | Kim, Young Rae, Kim, Dongha, Kim, Sung Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Cancer Association
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473276/ https://www.ncbi.nlm.nih.gov/pubmed/30092623 http://dx.doi.org/10.4143/crt.2018.137 |
Ejemplares similares
-
Personalized Prediction of Acquired Resistance to EGFR-Targeted Inhibitors Using a Pathway-Based Machine Learning Approach
por: Kim, Young Rae, et al.
Publicado: (2019) -
Mechanisms of Taxane Resistance
por: Maloney, Sara M., et al.
Publicado: (2020) -
Taxanes in the Treatment of Advanced Gastric Cancer
por: Kang, Byung Woog, et al.
Publicado: (2016) -
Dialysis adequacy predictions using a machine learning method
por: Kim, Hyung Woo, et al.
Publicado: (2021) -
Prediction model development of late-onset preeclampsia using machine learning-based methods
por: Jhee, Jong Hyun, et al.
Publicado: (2019)