Cargando…
Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications
In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Add...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473313/ https://www.ncbi.nlm.nih.gov/pubmed/30960485 http://dx.doi.org/10.3390/polym11030501 |
_version_ | 1783412401641619456 |
---|---|
author | Glass, Sarah Kühnert, Mathias Abel, Bernd Schulze, Agnes |
author_facet | Glass, Sarah Kühnert, Mathias Abel, Bernd Schulze, Agnes |
author_sort | Glass, Sarah |
collection | PubMed |
description | In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Additionally, they were transparent over a broader wavelength range. The dependence of the mechanical and optical properties of the hydrogels on the number of single differential and total irradiation doses was analyzed in detail. The hydrogels were prepared for usage as a drug delivery material with methylene blue as a drug model. In the first set of experiments, methylene blue was loaded reversibly after the hydrogel synthesis. Electron-beam-polymerized hydrogels incorporated twice as much methylene blue compared to the UV-polymerized gels. Furthermore, the release of the model drug was found to depend on the crosslinking degree of the hydrogels. In addition, electron-beam polymerization enabled the irreversible binding of the drug molecules if they were mixed with monomers before polymerization. |
format | Online Article Text |
id | pubmed-6473313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64733132019-05-03 Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications Glass, Sarah Kühnert, Mathias Abel, Bernd Schulze, Agnes Polymers (Basel) Article In this study, we highlight hydrogels prepared by electron-beam polymerization. In general, the electron-beam-polymerized hydrogels showed improved mechanical and optical transmittances compared to the conventional UV-cured hydrogels. They were more elastic and had a higher crosslinking density. Additionally, they were transparent over a broader wavelength range. The dependence of the mechanical and optical properties of the hydrogels on the number of single differential and total irradiation doses was analyzed in detail. The hydrogels were prepared for usage as a drug delivery material with methylene blue as a drug model. In the first set of experiments, methylene blue was loaded reversibly after the hydrogel synthesis. Electron-beam-polymerized hydrogels incorporated twice as much methylene blue compared to the UV-polymerized gels. Furthermore, the release of the model drug was found to depend on the crosslinking degree of the hydrogels. In addition, electron-beam polymerization enabled the irreversible binding of the drug molecules if they were mixed with monomers before polymerization. MDPI 2019-03-14 /pmc/articles/PMC6473313/ /pubmed/30960485 http://dx.doi.org/10.3390/polym11030501 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Glass, Sarah Kühnert, Mathias Abel, Bernd Schulze, Agnes Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title | Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title_full | Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title_fullStr | Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title_full_unstemmed | Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title_short | Controlled Electron-Beam Synthesis of Transparent Hydrogels for Drug Delivery Applications |
title_sort | controlled electron-beam synthesis of transparent hydrogels for drug delivery applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473313/ https://www.ncbi.nlm.nih.gov/pubmed/30960485 http://dx.doi.org/10.3390/polym11030501 |
work_keys_str_mv | AT glasssarah controlledelectronbeamsynthesisoftransparenthydrogelsfordrugdeliveryapplications AT kuhnertmathias controlledelectronbeamsynthesisoftransparenthydrogelsfordrugdeliveryapplications AT abelbernd controlledelectronbeamsynthesisoftransparenthydrogelsfordrugdeliveryapplications AT schulzeagnes controlledelectronbeamsynthesisoftransparenthydrogelsfordrugdeliveryapplications |